Developing Reagents for Membrane Protein Studies

Qinghai Zhang

In collaboration with JCIMPT-TSRI Labs
Detergents Are Necessary for Membrane Protein Sample Preparation

- A solubilized membrane protein must be stable for subsequent characterizations
- Still challenging to prepare stable membrane protein samples
- Limit of useful detergents (OG, NG, Maltosides, C8E4, C12E8, LDAO…)
- Low Resolution structures
Drug Screening Approach to Screen New Detergents?

- Detergents are hard to purify—the purity is critical
- Large amounts of detergents (grams) are required for a single experiment
- No high-throughput screening of a library of detergents
- Many variables need be screened for a single detergent
Can We Design Detergents?

S. Penel et al. *Biochimie* 1998, 80, 543-551
Criteria of A Good Detergent

Protein-detergent complex

- Large integrated protein-detergent complex
- Only hydrophilic protein-protein contacts
- High solvent Content

Ideal detergents

- Non-denaturing
- Stabilize the protein
- Form small protein-detergent complex
- Tight packing
- Facilitate larger area of protein-protein interaction
- Better mimicking membraneous structure?
Strategies / Detergent Classes

1. Tuning the detergent structures
2. Lipid-like phosphodetergents
3. Facial amphiphiles
1. Finely Tuning the Detergent Structures

Detergents with Short Branches

- Smooth wedged-shape monomer
- Pack more hydrophobicity into micelles

Appending short branches
Detergents with Short Branches

Micellar Size (Dynamic Light Scattering)

- Size is not changed by adding one carbon to the branch
-Appending two-carbon or longer branch alters the micellar properties
Protein Stability in Branched Detergents

ST MsbA (Andrew Ward/Chang lab)

- ATPase activity / mmolATP min⁻¹ mgMsbA⁻¹

Connexin26 (Kent Baker/Yeager and Stevens Labs)

- Normalized Fluorescence

β-2-adrenergic receptor

(Chris Roth and Michael Hanson/Stevens Lab)
Tuning Polar Heads and Hydrophobic Tails

Various polar groups (Glu, Mal, Fos…)

Dimeric detergents

“Tripod” detergents
2. Lipid-Like Phospho-detergents

- Glycerol spacer group
- Two alkyl chains

Phospholipid
Phosphocholine detergent
Single-chain

a spacer group to mimic the glycerol motif in lipids

Double-chain

short branches to mimic the dialkyl chain structure of lipids while maintaining their solubility
Pre-screen Detergents for OmpX Refolding by SDS-PAGE

Fos-choline detergents perform the best in refolding OmpX
Single-chain Fos-detergents afforded almost complete refolding of OmpX, much more effective than double-chain analogues
Micro-Scale NMR Analysis

A DHPC
B 138-Fos
C 179-Fos
D TPC
E 34-Fos
F 185-Fos

Reto Horst/Wüthrich Lab
3. Facial Amphiphiles
Better Membrane Mimics?

Head-to-tail detergents

Facial amphiphiles
Design Steroid-based Facial Amphiphiles

Resembles conventional head-to-tail detergents

Weak facial amphiphilicity

polar head groups

CHAPS

CHAPSO
Design Steroid-based Facial Amphiphiles

Resembles conventional head-to-tail detergents

Weak facial amphiphilicity

Carboxylate removed to leave a short flexible alkyl chain

Polar groups attached to one side
Proposed Model

Length can be adjusted

Low CMC (0.01%, 0.1 mM)

Twice mass of DDM

A relatively flat and large hydrophobic surface

13.4 Å

14.0 Å
Facial Amphiphiles Stabilize Membrane Proteins

ATPase activity of MsbA at rt

Maltose-cholane

β-UDM

Detergent binding number: 37 cholane/MsbA
219 UDM/MsbA
Terminal OH or Other Polar Groups Induce Small Micelles

![Graph showing the relationship between concentration (wt/v) and mean hydrodynamic radius (R_h) in nanometers (nm).](image)

- **Fos**:
 - Estimated AN: >30
 - RH (nm): 6-10

- **Mal**
 - Estimated AN: 20-30
 - RH (nm): 10-14

- **OH**
 - Estimated AN: 6-10
 - RH (nm): 5-10

- **CHAPS**: 14-38 (1.5-2.3 nm)

Estimated AN

- >30
- 20-30
- 10-14
- 6-10
- 5-10
Protein Stability in facial Amphiphiles

bR in Sodium cholate
pH 7.4 PBS buffer, RT

b3 in 231-chol
UV-vis spectra
reduced-oxidized
10/18/2007
21 days after exchange
09/27/2007

Cytochrome ba3 oxidase

Mitch Luna/Stout and Fee Labs
Crystallization Trials with Facial Amphiphiles

<table>
<thead>
<tr>
<th></th>
<th>Exchanged from</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>MsbA</td>
<td>UDM</td>
<td>No crystals</td>
</tr>
<tr>
<td>Cytochrome ba3 oxidase</td>
<td>DDM</td>
<td>Crystallized</td>
</tr>
<tr>
<td>Cytochrome ba3 oxidase</td>
<td>DDM</td>
<td>Crystallized</td>
</tr>
<tr>
<td>Cytochrome ba3 oxidase</td>
<td>DDM</td>
<td>Crystallized</td>
</tr>
</tbody>
</table>
Cytochrome ba_3 oxidase

similar to one of the crystal forms of $ba3$ in NG

Mitch Luna/Stout and Fee Labs
Summary

- Synthesized over 250 new amphiphilic molecules (> 99% purity by HPLC)
- Diversified structures have been made
- The branched detergents can have immediate application in 3-D crystallization
- Developed useful phospho-detergents for the NMR study of membrane proteins
- Steroid-based facial amphiphiles represent a new design of detergents, and they have many appealing properties comparing with the conventional head-to-tail detergents
- The facial amphiphiles impart substantial increased protein stability
Acknowledgments

Prof. M. G. Finn
Dr. Wenxu Hong
Dr. Xingquan Ma
Dr. Michael Baksh

Prof. Ray Stevens
Prof. Geoffrey Chang
Prof. Mark Yeager
Prof. Kurt Wüthrich
Prof. Peter Kuhn

Prof. Dave Stout
Prof. James Fee

Supported by JCIMPT